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In the present study, a theoretical formulation based on the collocation method
is presented for the vibration analysis of arbitrarily shaped membranes. The
mathematical relation between the two points of selected collocation points is
given by a special function, the so-called non-dimensional dynamic influence
function. Unlike the collocation methods in the literature, approximate functions
used in this paper are simple, one-dimensional functions of which the only
independent variable is the distance between the two points. The function is also
a wave-type solution that satisfies exactly the given governing differential equation
and physically describes the displacement response of a point in an infinite
membrane due to a unit displacement excited at another point. The approximate
solution is obtained by linear superposition of non-dimensional dynamic influence
functions, and then boundary conditions are applied at the discrete points. The
system matrix is always symmetric regardless of the boundary shape of the
membrane, and the calculated eigenvalues rapidly converge to the exact values
thanks to the special function employed in this study. Moreover, the method gives
the associated mode shapes successfully without using interpolation functions
between the boundary nodes. The validity and efficiency of the method proposed
in this paper are illustrated through several numerical examples.

7 1999 Academic Press

1. INTRODUCTION

Although many engineering applications deal with plates, vibration problems of
membranes have long been of great interest because it is known that a simply
supported polygonal plate has the same natural frequencies and associated mode
shapes as those of a membrane with identical geometry and fixed rectilinear edges
[1, 2]. Exact solutions for the transverse vibration of a membrane of simple
geometry such as rectangle, circle, ellipse are by now well established [3–5].
Mazumdar [6] used a concept of constant-deflection contours to find only the first
natural frequency of membranes of arbitrary shape. Nagaya [7, 8] proposed an
analytical method to obtain higher order modes and dynamic responses of
arbitrarily shaped membranes by using the Fourier expansion method for
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boundary conditions. Later, Ding [9] extended Nagaya’s method to the study of
a membrane carrying elastically supported masses. More recently, Kim and Kang
[10] have made free vibration analysis of convex polygonal membranes by using
plane wave-type solutions that satisfy exactly the governing differential equation,
propagate in one direction and vary sinusoidally in the other direction. In their
work, it has been illustrated that care must be taken in choosing functionally
independent base functions of a simple form. However, there are still limitations
in applying these analytical methods directly to the free vibration problem of
membranes of any arbitrary shape.

Because there exists an analogy between the membrane vibration problems and
the acoustical waveguide problems in the theoretical treatments, analysis methods
for waveguides of general cross-sectional shapes are briefly surveyed. A variety of
approximate methods, for example, finite difference method [11, 12], finite element
method [13], collocation [14, 15], point matching [16], Rayleigh–Ritz [17], and
Galerkin methods [18] have been applied to find cutoff frequencies of a waveguide
problem. Most of these methods are based on the superposition procedure of
independent, approximate solutions that are two-dimensional functions of two
independent variables and satisfy either the governing differential equation or
boundary condition. A large amount of numerical calculation is required and its
accuracy is limited as the number of independent solutions increases for higher
order modes.

In this paper, an alternative superposition method based on the collocation
method is proposed for the free and forced vibration analyses of arbitrarily shaped
membranes. In order to simplify a large amount of numerical calculation that may
be caused by the two-dimensional independent solutions, a special function called
‘‘non-dimensional’’ dynamic influence (Green’s) function is employed, which
exactly satisfies the governing differential equation of a membrane. The
non-dimensional dynamic influence function is a wave-type function that
propagates omni-directionally from a point when an infinite domain is considered.
Physically, it represents the displacement response at a point due to a unit
displacement excitation at another point in the infinite region. Thus, it is a
one-dimensional function, as the only independent variable, with the distance
between the two collocation points in the boundary of the membrane. The solution
of the given problem is found by linearly superposing the non-dimensional
dynamic influence functions, and then by applying boundary conditions at discrete
points.

The method presented in this paper may appear to be similar to the boundary
element method [19, 20] in a sense that boundaries of a problem domain of interest
are discretized, but the two methods use different discretization schemes. While
the boundary element method divides the whole boundary into boundary elements
in which insides are represented by appropriate interpolation functions and often
has a difficulty in evaluating singular value integration, the proposed method does
not require any interpolation function since it divides the whole boundary only
into nodes. As a result, the proposed method has no numerical integration because
it uses the non-dimensional dynamic influence functions that satisfy a governing
differential equation only at boundary nodes.
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It is well known that convergence of the collocation technique has never been
proved and increasing the number of collocation points does not necessarily
improve the value of the calculated eigenvalues [21]. Nevertheless, the method in
this study has much less difficulty than conventional collocation methods in
solving the eigenfrequency equation thanks to the one-dimensional, omni-
directional wave-type function and the symmetry of the system matrix regardless
of boundary shapes (note that the system matrix in either the collocation method
or the boundary element method is generally asymmetric). Example studies
presented here show that eigenvalues and their associated eigenmodes obtained
from the method are found to be very accurate. Besides, the eigenvalues converge
to the exact values even when a small number of the boundary nodes are used.

Although only the free vibration analysis of membranes of arbitrary shape are
presented in this study, the method may be extended to study acoustic cavity
problems as well as free vibration problems of arbitrarily shaped plates.

2. THEORETICAL FORMULATION

2.1.    

Consider a uniform membrane of arbitrary shape, having mass per unit area r,
as shown in Figure 1. It is assumed that in the equilibrium position the membrane
lies entirely in one plane under a uniform tension T per unit length, and also that
its boundary G is harmonically excited by a small displacement of u(rG , t) where
rG is the position vector of a point on the boundary. If the transverse displacement
of the membrane is denoted by w(r, t) where r is the position vector of a point
in the membrane, the governing differential equation and boundary condition may
be written as, respectively,

92w−
1
c2

12w
1t2 =0, w(rG , t)= u(rG , t), (1, 2)

Figure 1. Arbitrarily shaped membrane with continuous boundary G.
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where c=zT/r is the speed of sound. If a harmonic time dependence of the form
e jvt is assumed: i.e., w(r, t)=W(r) e jvt and u(rG , t)=U(rG ) e jvt, equations (1) and
(2) become:

92W+L2W=0, W(rG )=U(rG ), (3, 4)

where L=v/c.
When the boundary is represented by discrete points Pi , (i=1, 2, . . . , nb ), the

discretized boundary conditions corresponding to equation (4) take the form

W(ri )=U(ri ), i=1, 2, . . . , nb . (5)

Note that the discrete boundary conditions (5) converge to the continuous
boundary condition (4) as the number of the points, nb , increases to infinity.

2.2.        

To evaluate dynamic response and eigenmode of the membrane of finite size
shown in Figure 1, the non-dimensional dynamic influence function is introduced
to a membrane of infinite lateral extent shown in Figure 2. In the present case,
a unit harmonic displacement is assumed to be applied at a point Pk along the
fictitious boundary which is actually the same as that of the finite-sized membrane
as illustrated by a dotted line in Figure 2. For simple harmonic vibration of
frequency v, one form of the non-dimensional dynamic influence function for
displacement at a point P in the infinite membrane produced by the displacement
at the point Pk may be represented by a Bessel function of the first kind of order
zero J0(L=r− rk =), in which r and rk are, respectively, the position vectors of the
points P and Pk . Since there is no reflection returned away from the infinite
boundary of the membrane, only the zero order of Bessel functions of the first kind
is involved. Note also that the argument of the Bessel function used in this study
is dimensionless.

Figure 2. Infinite membrane with harmonic excitation points that are located on the identical
position of the boundary G in Figure 1.
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Assuming that harmonic displacements of amplitudes A1, A2, . . . , Anb are,
respectively, generated at points P1, P2, . . . , Pnb along the fictitious boundary, the
response at the point P of the membrane may be obtained by superposing
displacements that have resulted from the harmonic displacements at each

Figure 3. Discrete boundary nodes of the circular membrane when (a) nb =8, (b) nb =12, (c)
nb =16.
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Figure 4. Determinant of the system matrix versus wave number for the circular membrane. – – –,
nb =8; - - - -, nb =12; ——, nb=16.

boundary point. Thus, the displacement response at the position r in the infinite
membrane is

W(r)= s
nb

k=1

AkJ0(L=r− rk =). (6)

In equation (6), Ak’s indicate the strength of participation of each displacement
at the point Pk in the total response at the point P, and therefore may be defined
as the participation factor. When the boundary nodes of the membrane shown in
Figure 1 are assumed to be excited by the harmonic displacements having a proper
set of participation factors to satisfy the boundary conditions, equation (6) can
also be considered as the dynamic response of the finite membrane in the
approximate sense.

2.3.         

The participation factors Ak’s have to be determined by applying boundary
conditions (5). Substituting equation (6) into equation (5) gives

W(ri )= s
nb

k=1

AkJ0(L=ri − rk =)=Ui , i=1, 2, . . . , nb . (7)

Equation (7) may be written in a simple form:

SM(L)A=U, (8)
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where the nb × nb matrix SM(L) is given by SMik = J0(L=ri − rk =) and the nb ×1
vectors A and U represent the participation factors and harmonic displacements
at boundary points respectively. Note that SM(L) is a function of wave number
L=v/c. From equation (8), the participation factors Ak can, therefore, be
determined as follows

A=SM(L)−1U. (9)

By substituting equation (9) into equation (6), the dynamic response of the
membrane can then be achieved: i.e.,

W(r)= J(L)SM(L)−1U, (10)

where the kth element of the 1× nb row vector J(L) is given by J0(L=r− rk =).
For free vibration analysis, eigenvalues, and thus natural frequencies of the

arbitrarily shaped membrane whose edges are simply supported can be determined
by letting U= 0 in equation (8): i.e.,

SM(L)A= 0. (11)

For equation (11) to have a non-trivial solution,

det (SM(L))=0. (12)

The eigenvalues can be calculated from equation (12), and the participation factors
are obtained as the eigenvector of equation (11). The mode shapes associated with
the eigenvalues can be determined from equation (10).

3. CASE STUDIES

To verify the method presented in this paper, free vibration analyses of circular,
rectangular, and arbitrarily shaped membranes were performed. For each case, the
eigenvalues obtained by the present method are compared with those obtained by

T 1

Comparison of eigenvalues of the circular membrane obtained by the present method,
the exact method, and FEM

Present Present Present Exact FEM FEM FEM
Eigenvalues nb =8 nb =12 nb =16 solution nnd =1024 nnd =256 nnd =144

L1 2·4048 2·4048 2·4048 2·4048 2·4166 2·4524 2·4905
L2 3·8306 3·8317 3·8317 3·8317 3·8513 3·9109 3·9743
L3 None 5·1356 5·1356 5·1356 5·1744 5·2929 5·4191
L4 5·4969 5·5201 5·5201 5·5201 5·5515 5·6472 5·7489
L5 None 6·3790 6·3802 6·3802 6·4610 6·7077 6·9655
L6 None 7·0143 7·0156 7·0156 7·0592 7·1920 7·3335
L7 7·5876 None 7·5876 7·5883 7·7445 8·2150 8·6513
L8 None None 8·4172 8·4172 8·4841 8·6887 8·9073
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Figure 5. Mode shapes of the circular membrane obtained by the present method when nb =16:
(a) 1st mode, (b) 2nd mode, (c) 3rd mode, (d) 4th mode, (e) 5th mode, (f) 6th mode.

exact and numerical analyses. The mode shapes are also compared with those
obtained by exact or numerical methods to ensure the validity of the method.

3.1.  

To discretize the boundary condition as shown in equation (5), various numbers
of nodes were chosen on the boundary of a uniform, circular membrane of unit
radius. Equally spaced 8, 12, and 16 nodes were used respectively, as depicted in
Figures 3(a)–(c). For nb =8, nb =12, and nb =16, logarithmic values of
det (SM(L)) are plotted as a function of L in Figure 4 where the values of L

corresponding to the troughs represent the eigenvalues of the membrane. In
Table 1, the results that are obtained using the present method are compared with
the exact solutions and FEM results. The eigenvalues by FEM approach those of
the exact solutions when a large number of nodes and thus a significant amount
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of computation were used. On the other hand, only a small number of nodes on
the boundary, in the present instance nb =16, were enough to yield accurate
solutions for the geometry considered here.

Interestingly, some of the eigenvalues could not be predicted when eight and
twelve nodes were used: i.e., the third eigenvalue was not found for nb =8, and
the seventh and eighth eigenvalues for nb =12. Considering the modes of vibration
that are associated with the third and fourth eigenvalues may be of help to explain
these results when nb =8. From Figure 5, it may be seen that the third mode has

Figure 6. Discrete boundary nodes of the rectangular membrane when (a) nb =8, (b) nb =16, (c)
nb =24.
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Figure 7. Determinant of the system matrix versus wave number for the rectangular membrane.
– – –, nb =8; - - - -, nb =16; ——, nb=24.

two radial nodal lines and one azimuthal nodal circle, and the fourth mode two
azimuthal nodal circles. It may be imagined that more boundary nodes are
required to describe displacement variations in both the azimuthal and radial
directions. On the other hand, note that the seventh eigenvalue for nb =8 is
predicted in spite of the small number of boundary nodes. This phenomenon may
happen because the seventh mode has four radial nodal lines, and because the
locations of nodal points at which the nodal lines intersect with boundary are
identical with those of the boundary nodes. Thus, it may also be said that the

T 2

Comparison of eigenvalues of the rectangular membrane obtained by the present
method, the exact method, and FEM

Present Present Present Exact FEM FEM FEM
Eigenvalues nb =8 nb =16 nb =24 solution nnd =1089 nnd =289 nnd =49

L1 4·3491 4·3633 4·3633 4·3633 4·3651 4·3703 4·4133
L2 None 6·2927 6·2929 6·2929 6·3006 6·3240 6·5166
L3 None 7·4549 7·4560 7·4560 7·4669 7·4996 7·7682
L4 None 8·6001 8·5948 8·5947 8·6213 8·7013 9·1287
L5 None 8·7101 8·7266 8·7266 8·7407 8·7828 9·3523
L6 None None 10·5083 10·5083 10·5370 10·6234 11·3284
L7 None 10·7881 10·7943 10·7943 10·8313 10·9428 11·8467
L8 None None 11·0389 11·0384 11·1029 11·2974 12·7802
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Figure 8. Mode shapes of the rectangular membrane obtained by the present method when
nb =24: (a) 1st mode, (b) 2nd mode, (c) 3rd mode, (d) 4th mode, (e) 5th mode, (f) 6th mode.

degree of convergence significantly depends on the modal behavior of membranes
and the locations of boundary nodes.

3.2.  

As another verification example, a rectangular membrane whose dimension is
1·2 m by 0·9 m is considered. For nb =8, nb =16 and nb =24, the locations of
nodes on the boundary of the membrane are illustrated in Figure 6, where in each
case the equal number of nodes are located along the edges. In Figure 7 are shown
logarithmic values of det (SM(L)) as a function of L for three cases of discretized
models to find the eigenvalues of the membrane. It may be seen in Table 2 that
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the present method yields more accurate and rapidly converging results with much
less computational effort to the exact results than the FEM does. The fact that
the sixth and eighth eigenvalues are not found for nb =16 may be explained by
the same reasoning as done for the circular membrane. As may be seen from
Figure 8, the five boundary nodes for each edge were not enough to describe the
modal behavior of the sixth and eighth modes (i.e., (3, 2) and (4, 1) modes,
respectively) in both the x- and y-directions. Thus, it may be concluded that the
present method using the non-dimensional dynamic influence function can predict
very accurate eigenvalues of membranes when a small but appropriate number of
nodes along the boundary are used.

3.3.   

Finally, free vibration analysis is carried out for an arbitrarily shaped membrane
for which there exists no exact solution. The geometry and boundary node
locations of the membrane considered in this section are shown in Figure 9. In

Figure 9. Discrete boundary nodes of the arbitrarily shaped membrane when (a) nb =12, (b)
nb =16, (c) nb =20 (d) nb =24.
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Figure 10. Determinant of the system matrix versus wave number for the arbitrarily shaped
membrane. – – –, nb =12; - - - - -, nb =16; ——, nb=20; ——, nb=24.

Figure 10 are shown logarithmic values of det (SM(L)) as a function of L for four
cases. A comparison between the proposed and the numerical method is
summarized in Table 3. As it may be observed from both Tables 1 and 2, the
present method always yields lower eigenvalues and the FEM always yields higher
eigenvalues compared to the exact method. Therefore, the exact eigenvalues of the
membrane may exist between the eigenvalues that are obtained by the present
method and FEM. It can also be found from Table 3 that the present and FEM

T 3

Comparison of eigenvalues of the arbitrarily shaped membrane obtained by the
present method and FEM

Present Present Present Present FEM FEM FEM FEM
Eigenvalues nb =12 nb =16 nb =20 nb =24 nnd =784 nnd =576 nnd =400 nnd =256

L1 2·7038 2·7076 2·7089 2·7097 2·7230 2·7275 2·7349 2·7487
L2 4·2027 4·2190 4·2253 4·2279 4·2598 4·2698 4·2864 4·3171
L3 4·3585 4·3579 4·3579 4·3579 4·3786 4·3861 4·3987 4·4218
L4 5·5037 5·5464 5·5593 5·5649 5·6336 5·6557 5·6924 5·7607
L5 5·9199 5·9328 5·9336 5·9336 5·98460 6·0027 6·0324 6·0864
L6 6·0859 6·1107 6·1143 6·1159 6·1641 6·1805 6·2077 6·2571
L7 6·7746 6·9567 6·9849 6·9974 7·1334 7·1770 7·2495 7·3831
L8 7·1607 7·1837 7·1858 7·1868 7·3002 7·3401 7·4057 7·5238
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Figure 11. Mode shapes of the arbitrarily shaped membrane obtained by the present method when
nb =24: (a) 1st mode, (b) 2nd mode, (c) 3rd mode, (d) 4th mode, (e) 5th mode, (f) 6th mode.

results converge to each other as the number of nodes used on the boundary and
in the interior domain in the respective model increases. Mode shapes of the
membrane that were obtained by the present method are shown in Figure 11,
which were found to agree well with those by FEM.
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4. CONCLUSION

In this paper, a method has been presented that can be applied to find free and
forced responses of arbitrarily shaped membranes. Since the present method can
be implemented without any integration procedures and the system matrix always
becomes symmetric irrespective of boundary shape, complicated numerical
calculations become very simple. It was also seen from the examples that the
proposed method always gives the convergence as the number of collocation
points increases step by step.

It is expected that the method presented in this work can be applied to analyze
multiply-connected or elastically supported membranes. In addition, the basic
theory used in the present study can be extended to the free vibration analysis of
arbitrarily shaped plates and acoustic cavities with general boundary conditions.
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